Носителем наследственной информации является – ДНК — носитель наследственной информации

Ученые доказали, что носителем наследственной информации является ДНК

ДНК — носитель наследственной информации (Фото: ktsdesign, Shutterstock)

4 февраля 1944 года в США увидел свет номер «The Journal of Experimental Medicine» со статьей об одном из важнейших открытий в биологии. Освальд Эйвери (1877–1955) и его сотрудники Колин Маклауд и Маклин Маккарти в исследованиях, проведенных в лаборатории Рокфеллеровского медицинского института (Нью-Йорк), неопровержимо доказали, что носителем наследственной информации, «материалом» генов, является дезоксирибонуклеиновая кислота (ДНК).

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале 20 века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О.Эйвери, К.Маклауда и М.Маккарти по трансформации бактерий (1944). Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК.


Вплоть до 1950-х годов точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек, и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов.

Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии и медицине 1962 года.

www.calend.ru

ДНК — носитель наследственной информации

    ДНК — ОСНОВНОЙ НОСИТЕЛЬ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ [c.162]

    Во-первых, биохимики выяснили состав и строение основных химических компонентов организмов. Например, открытие нуклеиновых кислот произвело настоящий переворот в представлениях о сущности жизни, о наследственной организации растений, животных и человека. В результате проведенных в течение последних 100 лет исследований были выяснены особенности строения молекулы дезоксирибонуклеиновой кислоты (ДНК), которая играет роль главного носителя наследственной информации в живых организмах. 

[c.18]


    Современное естествознание расширило и конкретизировало определение сущности жизни, данное Ф. Энгельсом. Былп выяснено, что развитие любых организмов тесно связано не только с белками, но и с нуклеиновыми кислотами ДНК и РНК—-носителями наследственной информации об организме. Основными молекулами живых систем (организмов) являются биополимеры белки (полипептиды) и ДНК и РНК (полинуклеп-тилы), а основной признак лсизни — самовоспроизведение г ь [c.17]

    Нуклеиновые кислоты, прежде всего ДНК, являются материальными носителями наследственной информации и определяют видовую специфичность организма, сложившуюся в ходе биологической эволюции. Важно уяснить, что носителями наследственной (генетической) информации являются именно пуриновые и пиримидиновые основания, подобно тому, как боковые заместители аминокислот определяют пространственное строение и функциональные свойства белков. Сочетания трех рядом стоящих нуклеотидов в цепи ДНК называются триплетами оснований, или кодонами. Сумма всех кодонов ДНК составляет генетический код (см. главу 12). Молекула ДНК организована в клетке в структурные единицы — гены. Гены, в свою очередь, локализованы в хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую фенотипический признак орга- 

[c.285]

    У большой группы вирусов носителем наследственной информации является [c.112]

    Хромосомы — основной материальный носитель наследственной информации. Самовоспроизводящиеся структуры, представляющие комплекс ДНК и белков в ядрах эукариотических клеток (клеток высших организмов, имеющих клеточное ядро). В каждой хромосоме содержится по одной молекуле ДНК. Количество хромосом для каждого вида высших организмов является строго определенной постоянной величиной и, как правило, выражено четным числом. Во время деления ядра и клетки поведение хромосом подчиняется определенным закономерностям. 

[c.114]

    Строение синтезируемого белка (т. е. последовательность входящих в его состав аминокислот) предопределяется строением соответствующей (содержащей несколько тысяч оснований) молекулы дезоксирибонуклеиновой кислоты (ДНК), где каждой аминокислоте соответствует определенная последовательность трех соседних нуклеиновых оснований. Иными словами эту основную мысль выражают, говоря, что строение белка закодировано в молекуле ДНК, являющейся основным носителем наследственной информации. При синтезе новой молекулы белка протекает несколько процессов. На молекуле ДНК хромосом, как на матрице, синтезируется особая, более короткая (содержащая несколько сотен оснований) молекула рибонуклеиновой кислоты (РНК), называемая информационной РНК (иногда говорят РНК-посредяик или матричная РНК). JB отличие ог молекулы ДН] нредставляющей со- [c.131]


    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    В каждой живой клетке содержатся нуклеопротеиды — вещества, -состоящие из белков, соединенных с природными полимерами иного тила — нуклеиновыми кислотами. Вероятно, во всей химии не найдется столь же интересных для изучения веществ, как нуклеиновые кислоты, ибо они являются носителями наследственной информации. Рассмотрим кратко структуру нуклеиновых кислот для того, чтобы в следующем разделе познакомиться с тем, как связана их структура с той жизненно важной (в буквальном смысле этого слова) ролью, которую они играют в наследственности. 

[c.1062]

    В то же время следует помнить, что все перечисленные свойства генетического материала существуют в диалектическом единстве. Их нельзя отрывать друг от друга и изучать изолированно. Так, например, свойства дискретности и непрерывности составляют некую об цую характеристику носителей наследственной информации. Дискретные единицы — гены — составляют единое целое в виде группы сцепления — хромосомы — и входят в обилую систему более высокого порядка — систему генома, систему функционирующих генов различных клеток многоклеточного организма и т. л. 

[c.259]

    До того как были расшифрованы загадки строения и функционирования нуклеиновых кислот, проблемы воспроизведения живых организмов и передачи наследственных признаков в живых организмах биологическая наука связывала с понятиями хромосома и ген . Термин хромосома означал такую структурную единицу в ядре клетки, которая являлась носителем наследственной информации. Под термином ген понимали часть хромосомы , которая контролирует передачу отдельных характерных наследственных признаков цвет глаз, цвет волос и т. д. [c.533]

    Носитель наследственной информации (ДНК) отделен от метаболических пространств ядерной оболочкой. [c.522]

    В 1953 г. американский химик Дж. Уотсон (род. 1928) и английский физик Ф. Крик (род. 1916), обобщив работы многих ученых, описали вторичную структуру дезоксирибонуклеиново кислоты, представив ее в виде двойной спирали. Эта модель сыграла важную роль в развитии генетики. В 1958 г. за исследование строения индивидуальных белков, а в 1980 г. за определение строения

www.chem21.info

хранение и передача. Генетический код. Цепочка ДНК

После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли нуклеиновые кислоты в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям дезоксирибонуклеиновой кислоты относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка.

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая — от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом — №17. А самая большая пара — 1 и 3.

Диаметр двойной спирали у человека — всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации — находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов — половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Спирали ДНК состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин — с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? Это последовательность нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК), или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны. Их причина — это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

fb.ru

Нуклеиновые кислоты — носители наследственной информации

    Значительно позже были получены доказательства, что в синтезе белка, протекающем в основном в цитоплазме, решающую роль играют нуклеиновые кислоты, в частности ДНК. После того как было установлено, что ДНК является носителем и хранителем наследственной информации, был поставлен вопрос о том, каким образом эта генетическая информация, записанная (зашифрованная) в химической структуре ДНК, трансформи- [c.509]
    Современное естествознание расширило и конкретизировало определение сущности жизни, данное Ф. Энгельсом. Былп выяснено, что развитие любых организмов тесно связано не только с белками, но и с нуклеиновыми кислотами ДНК и РНК—-носителями наследственной информации об организме. Основными молекулами живых систем (организмов) являются биополимеры белки (полипептиды) и ДНК и РНК (полинуклеп-тилы), а основной признак лсизни — самовоспроизведение г ь 
[c.17]

    Во-первых, биохимики выяснили состав и строение основных химических компонентов организмов. Например, открытие нуклеиновых кислот произвело настоящий переворот в представлениях о сущности жизни, о наследственной организации растений, животных и человека. В результате проведенных в течение последних 100 лет исследований были выяснены особенности строения молекулы дезоксирибонуклеиновой кислоты (ДНК), которая играет роль главного носителя наследственной информации в живых организмах. [c.18]

    Нуклеиновые кислоты, прежде всего ДНК, являются материальными носителями наследственной информации и определяют видовую специфичность организма, сложившуюся в ходе биологической эволюции. Важно уяснить, что носителями наследственной (генетической) информации являются именно пуриновые и пиримидиновые основания, подобно тому, как боковые заместители аминокислот определяют пространственное строение и функциональные свойства белков. Сочетания трех рядом стоящих нуклеотидов в цепи ДНК называются триплетами оснований, или кодонами. Сумма всех кодонов ДНК составляет генетический код (см. главу 12). Молекула ДНК организована в клетке в структурные единицы — гены. Гены, в свою очередь, локализованы в хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую фенотипический признак орга- 

[c.285]

    Строение синтезируемого белка (т. е. последовательность входящих в его состав аминокислот) предопределяется строением соответствующей (содержащей несколько тысяч оснований) молекулы дезоксирибонуклеиновой кислоты (ДНК), где каждой аминокислоте соответствует определенная последовательность трех соседних нуклеиновых оснований. Иными словами эту основную мысль выражают, говоря, что строение белка закодировано в молекуле ДНК, являющейся основным носителем наследственной информации. При синтезе новой молекулы белка протекает несколько процессов. На молекуле ДНК хромосом, как на матрице, синтезируется особая, более короткая (содержащая несколько сотен оснований) молекула рибонуклеиновой кислоты (РНК), называемая информационной РНК (иногда говорят РНК-посредяик или матричная РНК). JB отличие ог молекулы ДН] нредставляющей со- [c.131]


    Бактериальные ДНК — это высокополимерные соединения, состоящие из большого числа нуклеотидов — полинуклеотиды с молекулярным весом около 4 млн. Молекула ДНК представляет собой цепь нуклеотидов, где расположение их имеет определенную последовательность. В последовательности расположения азотистых оснований закодирована генетическая информация каждого вида. Нарушение этой последовательности возможно при естественных мутациях или же под влиянием мутагенных факторов. При этом микроорганизм приобретает или утрачивает какое-либо свойство. У него наследственно изменяются признаки, т. е. появляется новая форма микроорганизма. У всех микроорганизмов — прокариотов и эукариотов — носителями генетической информации являются нуклеиновые кислоты — ДНК и РНК. Лишь некоторые вирусы представляют собой исключение у них ДНК отсутствует, а наследственная информация записана или отражена только в РНК. [c.28]

    Нуклеиновые кислоты содержатся в каждой живой клетке. ДНК служит носителем генетической информации. Это обусловлено тесной связью между двумя витками спиралей нуклеиновых кислот, которая основана на очень специфических водородных связях между адениновым (А) остатком одного витка и тиминовым (Т) остатком другого витка, который расположен строго напротив первого, а также между цитозиновым (Ц) остатком одного витка и гуаниновым (Г) остатком другого. Такое образование пар абсолютно специфично аденин не может образовывать мультивалентные водородные связи с гуанином или цитозином, а цитозин не может образовывать связи с тимином или аденином. Изумительно, что вся наследственность и эволюция зависят от двух групп водородных связей Генетический код для синтеза определенной аминокислоты обус- [c.578]

    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    В каждой живой клетке содержатся нуклеопротеиды — вещества, -состоящие из белков, соединенных с природными полимерами иного тила — нуклеиновыми кислотами. Вероятно, во всей химии не найдется столь же интересных для изучения веществ, как нуклеиновые кислоты, ибо они являются носителями наследственной информации. Рассмотрим кратко структуру нуклеиновых кислот для того, чтобы в следующем разделе познакомиться с тем, как связана их структура с той жизненно важной (в буквальном смысле этого слова) ролью, которую они играют в наследственности. 

www.chem21.info

74 года назад ученые доказали, что носителем наследственной информации является ДНК.

4 февраля 1944 года в США увидел свет номер «The Journal of Experimental Medicine» со статьей об одном из важнейших открытий в биологии. Освальд Эйвери (1877–1955) и его сотрудники Колин Маклауд и Маклин Маккарти в исследованиях, проведенных в лаборатории Рокфеллеровского медицинского института (Нью-Йорк), неопровержимо доказали, что носителем наследственной информации, «материалом» генов, является дезоксирибонуклеиновая кислота (ДНК). 

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале 20 века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию. Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. 

Одно из первых решающих доказательств принесли эксперименты О.Эйвери, К.Маклауда и М.Маккарти по трансформации бактерий (1944). Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК.

Вплоть до 1950-х годов точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек, и как они соединены. Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии и медицине 1962 года.

Источник: http://www.calend.ru/event/5735/

socio03.ru

А1. Материальным носителем наследственной информации в эукариотической клетке является:

5-9 класс

1) и- РНК 2) т-РНК 3) ДНК 4) хромосома

А2. В дочерние клетки кожи человека при их размножении поступает от материнской клетки:

полная генетическая информация

половина информации

четверть информации

нет верного ответа

А3. Репликация ДНК сопровождается разрывом химических связей:

пептидных, между аминокислотами

ковалентных, между углеводом и фосфатом

водородных, между азотистыми основаниями

ионных, внутри структуры молекулы

А4. При реплткации молекулы ДНК образуется:

нить, распавшаяся на отдельные фрагменты дочерних молекул

молекула, состаящая из двух новых цепей ДНК

молекула, половина которой состоит из нити и-РНК

дочерняя молекула, состоящая из одной старой и одной новой цепи ДНК

А5. Транскрипция – это процесс:

1)репликации ДНК

2) синтеза и-РНК

3) синтеза белка

4) присоединения т-РНК к аминокислоте

А6. Если аминокислота кодируется кодоном УГГ, то в ДНК ему соответствует триплет:

ТЦЦ 2) АГГ 3) УЦЦ 4) АЦЦ

А7. Один триплет ДНК несет информацию о:

Последовательности аминокислот в молекуле белка

Месте определенной АК в белковой цепи

Признаке конкретного организма

Аминокислоте, включаемой в белковую цепь

А8. Количество т-РНК, участвующих в трансляции, равно количеству:

Кодонов и-РНК, шифрующих аминокислоты

Молекул и-РНК

Генов, входящих в молекулу ДНК

Белков, синтезируемых на рибосомах

А9. Период жизни клетки от деления до деления называется:

Интерфаза 3) мейоз

Митоз 4) клеточный цикл

А10. Сколько хроматид содержится в 8 видимых в метафазе митоза хромосомах:

1) 6 2) 8 3) 12 4) 16

А11. Количество хромосом в соматических клетках человека после митоза равно:

1) 23 2) 46 3) 92 4) 44

АрТеМчИкОоО 15 марта 2017 г., 20:31:12 (2 года назад)

matematika.neznaka.ru

Гены-носители наследственности — Справочник химика 21

    Нуклеиновые кислоты, прежде всего ДНК, являются материальными носителями наследственной информации и определяют видовую специфичность организма, сложившуюся в ходе биологической эволюции. Важно уяснить, что носителями наследственной (генетической) информации являются именно пуриновые и пиримидиновые основания, подобно тому, как боковые заместители аминокислот определяют пространственное строение и функциональные свойства белков. Сочетания трех рядом стоящих нуклеотидов в цепи ДНК называются триплетами оснований, или кодонами. Сумма всех кодонов ДНК составляет генетический код (см. главу 12). Молекула ДНК организована в клетке в структурные единицы — гены. Гены, в свою очередь, локализованы в хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую фенотипический признак орга- [c.285]
    В то же время следует помнить, что все перечисленные свойства генетического материала существуют в диалектическом единстве. Их нельзя отрывать друг от друга и изучать изолированно. Так, например, свойства дискретности и непрерывности составляют некую об цую характеристику носителей наследственной информации. Дискретные единицы — гены — составляют единое целое в виде группы сцепления — хромосомы — и входят в обилую систему более высокого порядка — систему генома, систему функционирующих генов различных клеток многоклеточного организма и т. л. [c.259]

    За исследования строения индивидуальных белков Ф. Сенгеру в 1958 г. была присуждена Нобелевская премия. Однако после этого он переключился на разработку методов определения строения индивидуальных нуклеиновых кислот. Фактически это были поиски путей к определению строения генов-носителей наследственной информации в организмах живых существ. В конц 70-х годов эти работы увенчались успехом, в 1980 г. Ф. Сенгеру была вновь присуждена Нобелевская премия по химии — беспрецедентный случай в истории химии. До него Нобелевскую премию дважды получала М. Кюри, но один раз по химии, а второй раз по физике. Двумя Нобелевскими премиями по физике был отмечен Д. Бардин, и две Нобелевские премии получил Л. Полинг, но одну по химии, а другую за деятельность в защиту мира. [c.185]

    Нуклеиновые кислоты построены гораздо сложнее. Их молекулы очень велики и состоят из более простых единиц — нуклеотидов, соединенных в самых разнообразных пропорциях и в различной последовательности. Число возможных видов нуклеиновых кислот почти бесконечно, и считается, что специфические различия между ними имеют исключительно важное значение. Многие полагают, что эти структуры являются основной составной частью генов — носителей наследственных признаков. [c.11]

    В 1953 г. американский химик Дж. Уотсон (род. 1928) и английский физик Ф. Крик (род. 1916), обобщив работы многих ученых, описали вторичную структуру дезоксирибонуклеиново кислоты, представив ее в виде двойной спирали. Эта модель сыграла важную роль в развитии генетики. В 1958 г. за исследование строения индивидуальных белков, а в 1980 г. за определение строения генов-носителей наследственной информации в организмах дважды был удостоен Нобелевской премии Ф. Сенгер (род. 1918). [c.8]


    Гены — носители наследственности [c.46]

    Наконец, молекулярная биология установила, что гены представляют собой участки молекул ДНК, входящих в состав хромосом. Уточнение материального носителя наследственности можно представить следующей исторической схемой  [c.484]

    До того как были расшифрованы загадки строения и функционирования нуклеиновых кислот, проблемы воспроизведения живых организмов и передачи наследственных признаков в живых организмах биологическая наука связывала с понятиями хромосома и ген . Термин хромосома означал такую структурную единицу в ядре клетки, которая являлась носителем наследственной информации. Под термином ген понимали часть хромосомы , которая контролирует передачу отдельных характерных наследственных признаков цвет глаз, цвет волос и т. д. [c.533]

    Как установлено в настоящее время, ДНК является материальным носителем наследственности и входит в состав генов, из которых состоят хромосомы клетки. Наличие периода идентичности в 34 А на рентгенограмме кристаллической ДНК (в виде литиевой соли), учет известных размеров атомов, расстояний между ними и валентных углов, а также результаты других исследований привели Крика и Уотсона к выводу, что макромолекулы ДНК связаны между собой попарно при помощи водородных мостиков в виде двойной спирали постоянного диаметра (рис. 49). При этом остатки гетероциклических оснований, находящиеся в боковой цепи, упакованы в середине спирали, как стопка монет. Аналогичную структуру имеет РНК. [c.248]

    К концу XIX столетия биологи обнаружили, что хромосомы (которые становятся различимыми в ядре в начале деления) являются носителями наследственной информации. Но данные о том, что веществом, из которого состоят гены, является дезоксирибонуклеиновая кислота (ДНК) хромосом, были получены значительно позже при изучении бактерий. В 1944 г. было установлено, что очищенная ДНК одного бактериального щтамма способна передавать наследственные свойства этого щтамма другому щтамму, несколько отличному от первого. Это открытие оказалось слишком неожиданным и не получило широкого признания до начала 50-х годов, так как считалось, что лишь белки обладают достаточно сложной конформацией, чтобы быть носителями заключенной в генах информации. Сегодня представление о том, что именно ДНК является носителем генетической информации (хранящейся в ее длинных полинуклеотидных цепях), столь прочно вошло в биологическое мышление, что порой трудно осознать, какой огромный пробел в наших знаниях заполнило это представление. [c.123]

    Ядерная наследственность, связанная с распределением носителей наследственности — генов, локализованных в хромосомах. [c.394]

    Гибридологический анализ, разработанный Менделем, и результаты, полученные на его основе, заложили концепцию фундаментального понятия генетики и биологии в целом — понятие гена. В последние десятилетия XIX в. были обнаружены хромосомы, описаны митотическое и мейотическое деления клетки. Тем не менее не были известны материальные носители наследственной информации. Только после того как законы Менделя были открыты вновь в 1900 г., сопоставление менделевского расщепления признаков и распределения хромосом в мейозе позволило сделать окончательный вывод о том, что именно

www.chem21.info

Leave a comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *